
What did we learn from the ACST-2 trial about carotid intervention in asymptomatic patients with severe stenosis?

Alison Halliday
Emeritus Professor of Vascular Surgery
Nuffield Department of Population Health

Chair, ESC Stroke Council

University of Oxford

Background ~ 15% ischaemic strokes caused by carotid disease

UK ~15,000 strokes/year from carotid disease

EU - increase in all strokes likely: ~600,000 in 2015 to >800,000 in 2035 **Worldwide**: 12.2m first strokes/year >100m alive after stroke, many disabled

So, Worldwide there are over 1m strokes/year from carotid disease, half disabling or fatal (**ineligible** for secondary preventive carotid interventions)

ACST-1 trial (1993-2010)

3120 patients with severe stenosis eligible for CEA randomized:

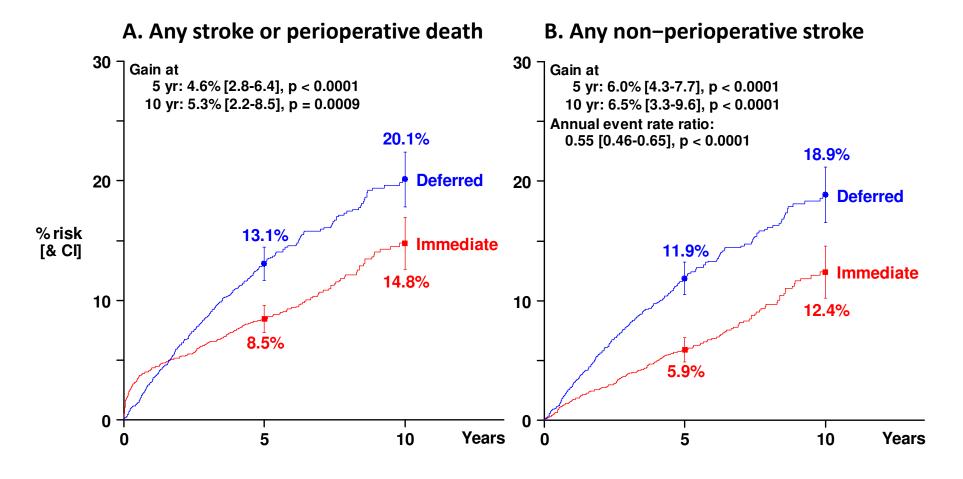
Immediate CEA <u>versus</u> control (no CEA unless symptoms occur)

Individual patient data analysis of all 3 trials

Over 5,000 in ACST-1, ACAS and VACS Trials

	VACS	ACAS	ACST-1
Nos. of patients	444	1662	3120
(Immediate vs Deferred)	(211 vs 233)	(828 vs 834)	(1560 vs 1560)
Period of randomisation	Apr 83 – Oct 87	Dec 87 – Dec 93	Apr 93 – Jul 03
Date of last follow-up	May 1991	Feb 1997	May 2008
Median (IQR) follow-up year	4.5 (2.5-6.0)	4.2 (2.9-5.0)	6.1 (3.9-9.1)

Almost all were on double drug therapy (Double therapy is BP lowering + anti-thrombotic)

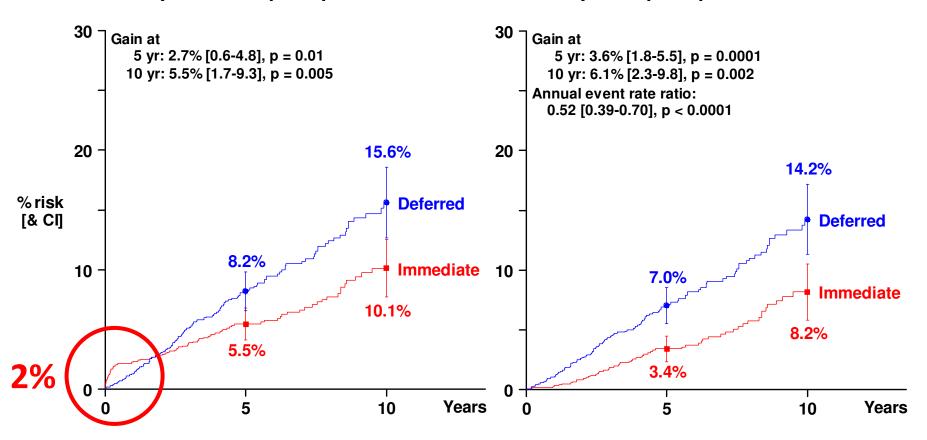

Many were on triple therapy, which also includes a statin

5226 patients in VA, ACAS and ACST-1

Medical therapy from 1983-2008

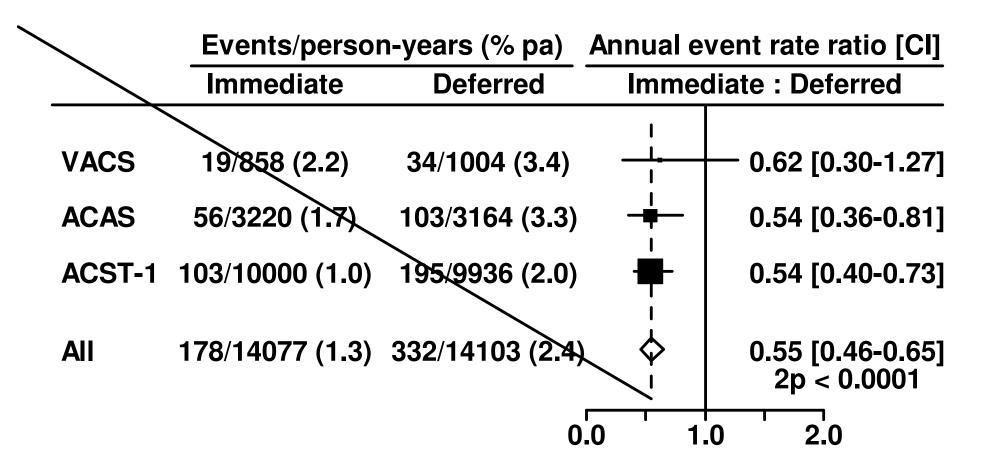
Baseline characteristics	Veterans Affairs Cooperative Study (VACS)	Asymptomatic Carotid Atherosclerosis Study (ACAS)	Asymptomatic Carotid Surgery Trial (ACST-1)
Period of entry	1983-1987	1987-1993	1993-2003
Region	North America	North America	Mainly Europe
Number randomised	444	1662	3120
Median (IQR) follow-up year†	4.5 (2.5-6.0)	4.2 (2.9-5.0)	6.1 (3.9-9.1)
Age range, years	37-83	40-79	40-91
Mean age, years (SD)	64.5 (6.8)	66.7 (6.9)	68.1 (7.5)
Men %	100.0	65.8	65.5
Treated hypertension %	57.2	70.2	64.8
Mean blood pressure, mm Hg (SD)			
Systolic	142 (20)	145 (18)	153 (22)
Diastolic	75 (16)	78 (9)	83 (11)
Lipid lowering %‡	0.0	12.8	32.4
Mean cholesterol, mmol/L (SD)	No data	5.9 (1.1)	5.8 (1.2)
On antithrombotic therapy %	55.2	80.5	93.8
Diabetes %	27.7	23.3	19.9
Previous contralateral CEA %	20.5	19.4	24.0
Ipsilateral CT infarct %	No data	7.9	8.1
Contralateral occlusion %	0.0	9.3	8.8

10-year risk of any stroke or perioperative death All 3 trials, either with double or with triple drug therapy

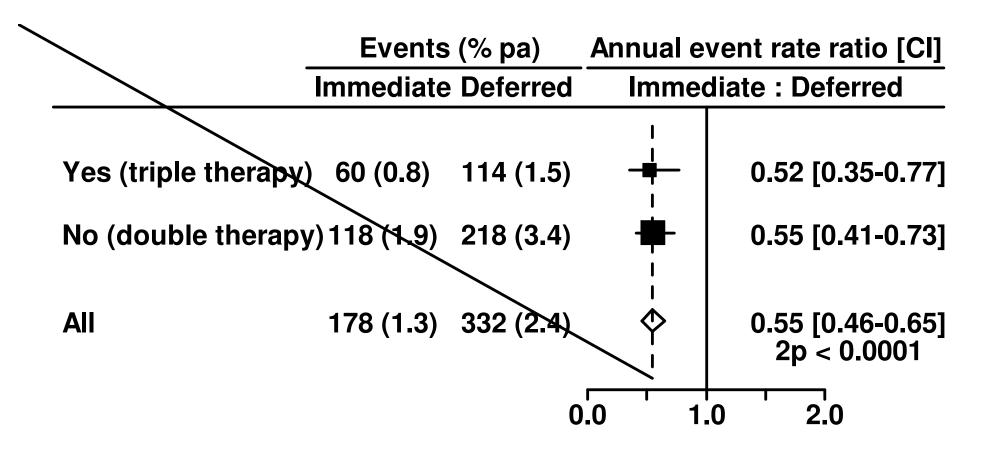


Asymptomatic Carotid surgery trials (ACST-1, ACAS, VA)

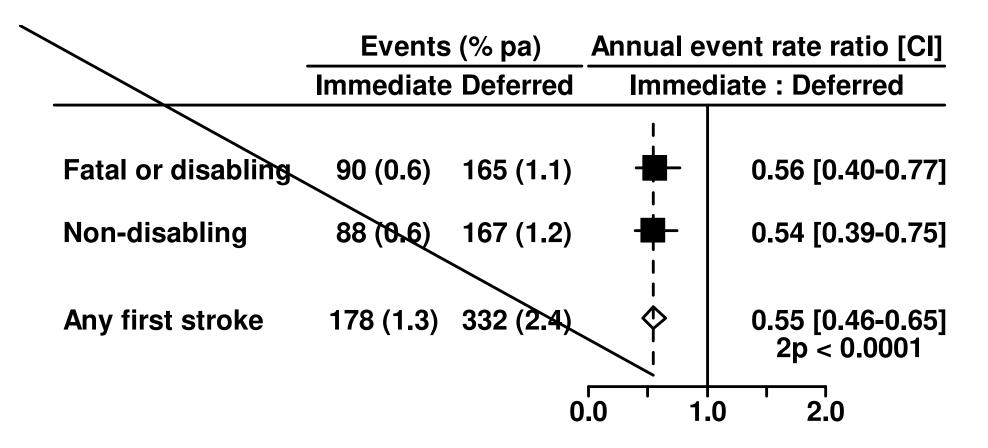
Only patients on <u>triple</u> therapy before event (Antithrombotic, blood pressure, statin)


A. Any stroke or perioperative death

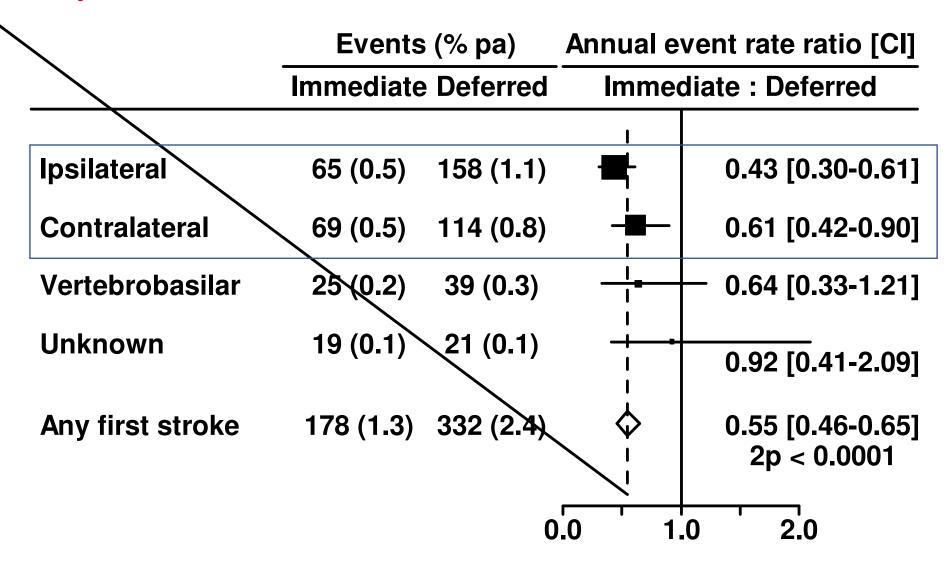
B. Any non-perioperative stroke


Non-perioperative stroke

Risks appear to have been halved by CEA in all three trials

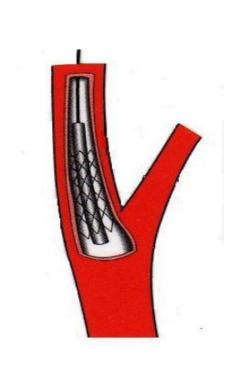

Non-perioperative stroke by lipid-lowering therapy before any stroke

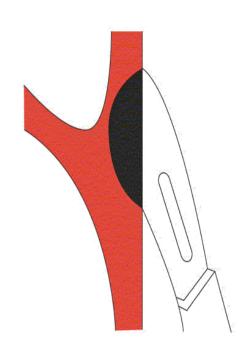
CEA halves stroke rate whether or not statins are used (& statins halve stroke rates whether or not CEA is done)


Non-perioperative stroke, by outcome

Fatal/disabling and non-disabling strokes are both halved

Non-perioperative stroke, by subtype


Ipsilateral and contralateral strokes are both reduced

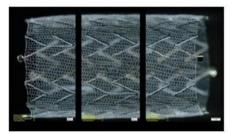

Conclusions from ACST-1 and the other major trials of CEA vs no CEA

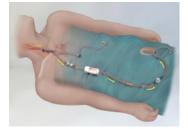
For asymptomatic patients with severe stenosis, these three trials showed that, even if good medical treatment is given, CEA ~halves long-term stroke rate

ACST-2: trial of carotid artery stenting (CAS) versus carotid artery surgery (CEA: "endarterectomy")

Trials have shown CEA restores patency and ~halves later stroke rates, and that modern medical therapy also ~halves long-term stroke rates.

CAS can also restore patency, and in <u>recent nationwide registry data</u> CAS and CEA each has ~1% risk of causing disabling stroke or death.


Recent Carotid Stenting therapy includes


Statins and DAPT to lower peri-procedural risk and ...

- Newer stent designs
- Flow reversal (MOMA)
- Greater experience

which reduce risk further

2014-19 German mandatory nationwide registry of in-hospital* CAS/CEA risks in asymptomatic patients

18,000 86,000 CAS CEA

Disabling stroke or death: 0.7% 0.7%

Any stroke or death: 1.8% 1.4%

NB In-hospital stroke risks were not affected by gender or age.

* Median 4-5 days to discharge; 30-day risks would be higher.

Source: https://iqtig.org/qs-verfahren/qs-karotis

CAS vs CEA: why do we need randomised evidence?

Large, representative registries can assess procedural hazards, and determine reliably whether they depend on gender or age.

But, registries cannot reliably compare long-term <u>non-procedural</u> stroke rates; for this, *large-scale randomised evidence* is required.

- International trial; included 3625 patients from 130 hospitals (mostly European), each with an interventionist, a vascular surgeon, and a stroke doctor

- Collaborators used their normal procedures, with, for stenting, any CE-approved devices and double anti-platelet therapy.

- <u>Severe</u> carotid artery stenosis (≥60% on ultrasound), with no recent ipsilateral stroke or other symptoms from it

Thought to need a carotid procedure (stenting or surgery),
 but <u>substantially uncertain</u> whether to prefer CAS or CEA

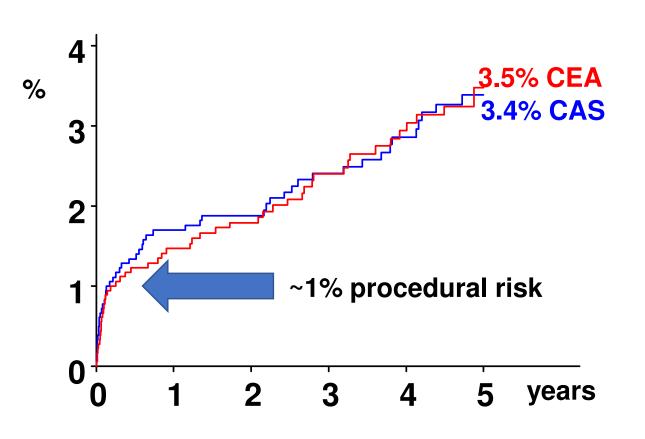
- Randomise 3625 patients to CAS vs CEA and follow for a mean of 5 person-years

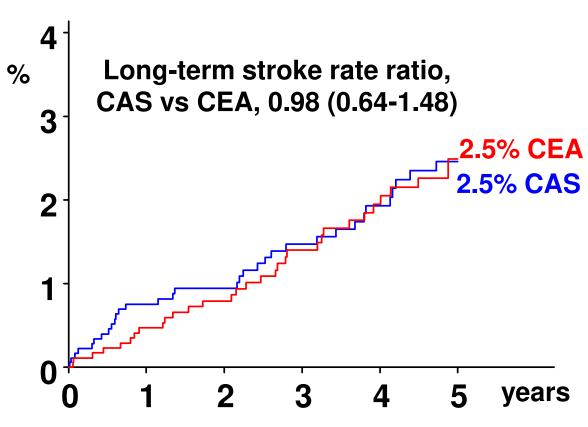
- Give both groups good long-term medical treatment, usually with lipid-lowering, anti-thrombotic and anti-hypertensive therapy.

- Monitor long-term stroke rates, classifying outcome 6 months later (with disabling strokes having modified Rankin Score [mRS] 3-5).

ACST-2 and **CAS** therapy

Stent use


CPD use


Closed cell	45%
Open cell	32 %
Hybrid	13%
Membrane	10%

Filter	69%
Proximal occlusion	16%
Distal balloon	<1%
None	15%

ACST-2: carotid stenting (CAS) vs endarterectomy (CEA) 5-year risk of procedural death, or of disabling or fatal stroke

Left: Including procedural risks, Right: Excluding procedural risks

ACST-2: carotid stenting (CAS) vs endarterectomy (CEA) Severity of worst procedural event & worst non-procedural stroke

	Procedural (<30 days) stroke or death		Non-procedural stroke (with mean 5-year FU)	
	Allocated CAS n=1811	Allocated CEA n=1814	Allocated CAS n=1748*	Allocated CEA n=1767*
Disabling or fatal	15 (0.9%) [†]	18 (1.0%)†	44 (2.5%)	45 (2.5%)
Non-disabling	48 (2.7%)	29 (1.6%)	47 (2.7%)	34 (1.9%)

^{*} Excludes the 63 CAS vs 47 CEA patients who had a procedural stroke or death

[†] Includes the 2 CAS vs 6 CEA procedural deaths not involving a stroke

Severity of worst procedural event, and worst non-procedural stroke

	Procedural (<30 days) stroke or death		•	Non-procedural stroke (with mean 5-year FU)	
	Allocated CAS n=1811	Allocate n=1814			Allocated CEA n=1767
Disabling or fatal	15	18		44	45
Non-disabling:					
mRS score 2	9	9		9	5
mRS score 1	23	15		23	17
mRS score 0	16	5		15	12

ACST-2: carotid stenting (CAS) vs endarterectomy (CEA) Any procedural death or any stroke <u>at any time</u>, by severity

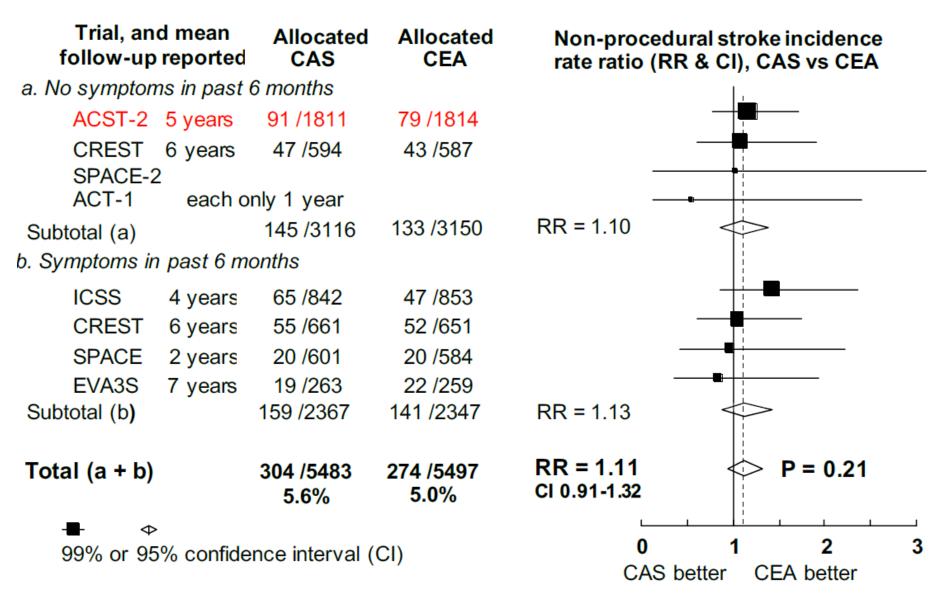
	Allocated CAS n=1811	Allocated CEA n=1814
mRS >1: Fatal, disabling, or unable to carry out some previously usual activities	77	77
mRS 0-1: Non-disabling, and still able to carry out all previously usual activities	77 (4.2%)	49 (2.7%)

3625 patients with severe stenosis but no recent ipsilateral symptoms, half allocated CAS, half CEA; good compliance, and good medical therapy.

Summary of results

1% 30-day risk, in each group, of *procedural death or disabling stroke*; 2.5% 5-year risk, in each group, of *non-procedural disabling/fatal stroke*.

But, with stenting, there was a 1-2% excess risk of *non-disabling stroke* that left patients still able to carry out all their previously usual activities.


CAS vs CEA: ACST-2 results plus other evidence

<u>Procedural</u> strokes: An excess of non-disabling procedural strokes with CAS is consistent with large, recent, nationally representative registry data.

Non-procedural strokes: To compare the effects of CAS vs CEA, ACST-2 should be considered along with all other major trials.

8 major trials of CAS vs CEA, 4 in asymptomatic and 4 in symptomatic patients, have been reported. A <u>formal meta-analysis</u> can combine their findings.

Non-procedural stroke incidence in the 8 major trials of CAS vs CEA

For the Total, RR is similar for ipsilateral strokes (131 vs 119) and for other strokes (173 vs 155)

Conclusions from the German national registry, ACST-2 and the other major trials of CAS vs CEA

Competent CAS and CEA involve ~1% procedural death or disabling stroke, then have similar effects on long-term rates of fatal or disabling stroke.

For asymptomatic patients with severe stenosis, previous trials showed that, even if good medical treatment is given, CEA ~halves long-term stroke rate.

If so, then in ACST-2, where 0.5%/year had a fatal or disabling stroke with either CAS or CEA, with neither procedure ~1% per year would have done so.

ACST-2 was published online in *The Lancet* on 29 Aug 2021 with immediate open access

The chief acknowledgements are to the patients who agreed to participate; the collaborating doctors at 130 hospitals in 33 countries who randomised them from 2008-20 and are continuing follow-up until 2026, and trial staff.

ACST-2 has for some years been hosted and funded by Oxford University's Nuffield Department of Population Health (NDPH; Prof Rory Collins).

Current funding is from the MRC/BHF/CRUK core support for the NDPH. Until 2013, funding was from the UK NIHR HTA and BUPA Foundation.